what is sea ice?

 

Sea ice is frozen seawater that floats on the ocean surface. Blanketing millions of square kilometers, sea ice forms and melts with the polar seasons, affecting both human activity and biological habitat. In the Arctic, some sea ice persists year after year, whereas almost all Southern Ocean or Antarctic sea ice is "seasonal ice," meaning it melts away and reforms annually. While both Arctic and Antarctic ice are of vital importance to the marine mammals and birds for which they are habitats, sea ice in the Arctic appears to play a more crucial role in regulating climate.

Because they are composed of ice originating from glaciers, icebergs are not considered sea ice. Most of the icebergs infesting North Atlantic shipping lanes originate from Greenland glaciers.


 

Why is sea ice so important?

 

Even though sea ice occurs primarily in the polar regions, it influences our global climate. Sea ice has a bright surface, so much of the sunlight that strikes it is reflected back into space. As a result, areas covered by sea ice don't absorb much solar energy, so temperatures in the polar regions remain relatively cool. If gradually warming temperatures melt sea ice over time, fewer bright surfaces are available to reflect sunlight back into space, more solar energy is absorbed at the surface, and temperatures rise further. This chain of events starts a cycle of warming and melting. This cycle is temporarily halted when the dark days of the polar winter return, but it starts again in the following spring. Even a small increase in temperature can lead to greater warming over time, making the polar regions the most sensitive areas to climate change on Earth.

Sea ice also affects the movement of ocean waters. When sea ice forms, most of the salt is pushed into the ocean water below the ice, although some salt may become trapped in small pockets between ice crystals. Water below sea ice has a higher concentration of salt and is more dense than surrounding ocean water, and so it sinks. In this way, sea ice contributes to the ocean's global "conveyor-belt" circulation. Cold, dense, polar water sinks and moves along the ocean bottom toward the equator, while warm water from mid-depth to the surface travels from the equator toward the poles. Changes in the amount of sea ice can disrupt normal ocean circulation, thereby leading to changes in global climate (for more information, see sea iceSea Ice and Global Climate).

Too much or too little sea ice can be a problem for wildlife and people who hunt and travel in polar regions. In the Arctic, sea ice can be an obstacle to normal shipping routes through the Northern Sea route and Northwest Passage. See the Environment section to learn more about the impact of sea ice changes on people and wildlife.


 

Global Sea Ice Extent and Concentration

 

Sea ice regulates exchanges of heat, moisture and salinity in the polar oceans. It insulates the relatively warm ocean water from the cold polar atmosphere except where cracks, or leads, in the ice allow exchange of heat and water vapor from ocean to atmosphere in winter. The number of leads determines where and how much heat and water are lost to the atmosphere, which may affect local cloud cover and precipitation.

The seasonal sea ice cycle affects both human activities and biological habitats. For example, companies shipping raw materials such as oil or coal out of the Arctic must work quickly during periods of low ice concentration, navigating their ships towards openings in the ice and away from treacherous multiyear ice that has accumulated over several years. Many arctic mammals, such as polar bears, seals, and walruses, depend on the sea ice for their habitat. These species hunt, feed, and breed on the ice. Studies of polar bear populations indicate that declining sea ice is likely to decrease polar bear numbers, perhaps substantially (Stirling and Parkinson 2006).

Ice thickness, its spatial extent, and the fraction of open water within the ice pack can vary rapidly and profoundly in response to weather and climate. Sea ice typically covers about 14 to 16 million square kilometers in late winter in the Arctic and 17 to 20 million square kilometers in the Antarctic Southern Ocean. On average, the seasonal decrease is much larger in the Antarctic, with only about 3 to 4 million square kilometers remaining at summer's end, compared to approximately 7 million square kilometers in the Arctic. Over the past several years, Arctic minima have been only 4 to 6 million square kilometers. These maps provide examples of late winter and late summer ice cover in the two hemispheres.

Sea ice long-term climatology
Sea ice climatologies: Arctic and Antarctic sea ice concentration climatology from 1979-2000, at the approximate seasonal maximum and minimum levels based on passive microwave satellite data. Image provided by National Snow and Ice Data Center, University of Colorado, Boulder. 

This free website was made using Yola.

No HTML skills required. Build your website in minutes.

Go to www.yola.com and sign up today!

Make a free website with Yola